Revision for The First Exam

Linear Algebra - Abdullah AlAzemi

1. Let
$$A = \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix}$$
. Compute $A^2 + I_2$.

2. Let
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
.

- (a) Find A^{1977} .
- (b) Find all matrices B such that AB = BA.

3. Let
$$A = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$
. Find A^{100} .

4. Let
$$A = \begin{bmatrix} 1 & -2 \\ -3 & 0 \\ 2 & 6 \end{bmatrix}$$
, and $B = \begin{bmatrix} -2 & 3 & 4 \\ 3 & 2 & 1 \end{bmatrix}$. Find the columns of AB as a linear combination of columns of A .

5. Let
$$A = \begin{bmatrix} 1 & 2 \\ 4 & 5 \\ 3 & 6 \end{bmatrix}$$
 and $B = \begin{bmatrix} 0 & 1 & -3 \\ -3 & 1 & 4 \end{bmatrix}$. Express the third row of AB as a linear combination of the rows of B

6. Let A be a
$$2 \times 2$$
 matrix and $B = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$. If $AB = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$, find A.

- 7. Let A and B be two $n \times n$ matrices such that A is symmetric and B is skew-symmetric. Show that AB + BA is a skew-symmetric matrix.
- 8. Let A be 2×2 skew-symmetric matrix. If $A^2 = A$, then A = 0.

9. If
$$AA^{T} = 0$$
, then $A = 0$.

10. Let
$$A = \begin{bmatrix} 1 \\ 3 \\ -1 \\ 3 \end{bmatrix}$$
. Find all constants $c \in \mathbb{R}^3$ such that $(cA)^T \cdot (cA) = 5$.

11. Let
$$A = \begin{bmatrix} 2 & -1 & 3 \\ 0 & 4 & 1 \\ 1 & -2 & -3 \end{bmatrix}$$
. Find a symmetric matrix S and a skew symmetric matrix K such that $A = S + K$.

12. Find the reduced row echelon form (r.r.e.f.) of the following matrix:

$$\left[\begin{array}{cccc}
2 & 4 & 6 & 0 \\
1 & 2 & 4 & 0 \\
1 & 3 & 3 & 1
\end{array}\right]$$

13. Show that if a system AX = B has more than one solution, then it has an infinite many solutions.

14. Discuss the consistency of the following system:

15. Solve the following system using the Guass-Jordan method.

16. Solve the following system:

17. Find all values of a for which the following system has:

(i) no solution, (ii) unique solution, (iii) infinite many solutions.

18. Let
$$A = \begin{bmatrix} 1 & 0 & 3 & 3 \\ 0 & 1 & 1 & -1 \\ 1 & -2 & 3 & 1 \\ 0 & 2 & 0 & a^2 + 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 \\ 0 \\ 0 \\ a + 2 \end{bmatrix}$. Find all value(s) of a such that

19. Solve the system

20. Consider the system:

$$\begin{array}{rclcrcr}
x & - & y & + & (a+3)z & = & a^3 - a - 7 \\
-x & + & ay & - & az & = & a \\
& & & & & & & & & \\
2(a-1)y & + & (a^2+2)z & = & 8a - 14.
\end{array}$$

(a) Find all value(s) of a for which the system has:

(i) no solution, (ii) unique solution, and (iii) infinite many solutions.

(b) Solve this system for a = 1.

21. Show that if C_1 and C_2 are solutions of the system $A\mathbf{x} = B$, then $4C_1 - 3C_2$ is also a solution of this system.

22. Let
$$A = \begin{bmatrix} 2 & 1 & 0 \\ -1 & -2 & 3 \\ 1 & 1 & -1 \end{bmatrix}$$
, and $B = \begin{bmatrix} 0 & 1 & -2 \\ 3 & 3 & -1 \\ -1 & 1 & -3 \end{bmatrix}$. Find a matrix C such that $AB^{-1}C = 2I_3$.

23. Let AX = B be a linear system such that

$$A = \begin{bmatrix} 2 & -1 & 3 \\ 0 & 1 & -2 \\ -1 & -1 & 1 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \text{ and } B = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}.$$

- (a) Find A^{-1} ,
- (b) Use part (a) to solve AX = B.

24. Let
$$A^{-1} = \begin{bmatrix} 1 & -2 & 0 \\ 0 & 1 & 0 \\ 1 & -2 & 1 \end{bmatrix}$$
.

- (a) Find A.
- (b) Find C^T , if $CA^{-1} = \begin{bmatrix} 1 & 2 & -1 \\ 0 & 6 & 3 \end{bmatrix}$.

25. If
$$A^2 = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ -2 & 4 & 1 \end{bmatrix}$$
 and If $A^3 = \begin{bmatrix} 1 & 0 & 0 \\ 6 & 1 & 0 \\ 3 & 6 & 1 \end{bmatrix}$, find A . [Hint: $A = A^3 (A^2)^{-1}$.]

26. (a) Find A if
$$A^{-1} = \begin{bmatrix} 4 & -2 & 1 \\ 0 & -1 & 4 \\ 1 & -1 & 2 \end{bmatrix}$$
.

(b) Solve the linear system $A^{-1}X = \begin{bmatrix} 2 \\ 4 \\ 2 \end{bmatrix}$.

27. Let
$$A^{-1} = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & -1 \\ 2 & 0 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$. Find C if $AC = B^T$.

[Hint: Consider multiplying both sides from the left with A^{-1} .]

28. Let
$$A^{-1} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$
. Find all $x, y, z \in \mathbb{R}^3$ such that $\begin{bmatrix} x & y & z \end{bmatrix} A = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$.

29. Let
$$A = \begin{bmatrix} 0 & 1 & -1 \\ 1 & 1 & 0 \\ 0 & 1 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 3 & 0 \\ 1 & 1 & -1 \end{bmatrix}$.

- (a) find B^{-1} .
- (b) Find C if A = BC.
- 30. Let A, B, and C be $n \times n$ matrices such that D = AB + AC is non-singular.
 - (a) Find A^{-1} is possible.
 - (b) Find $(B+C)^{-1}$ if possible.
- 31. Answer each of the following as a True or False. Justify your answer.
 - (a) If X_1, X_2 and X_3 are solutions of AX = B $(B \neq 0)$, then $\frac{1}{2}X_1 + \frac{3}{2}X_2 X_3$ is a solution to AX = 0.
 - (b) If A is a 2×2 skew-symmetric matrix, then $A^2 = c I_2$ where c is a real number.

- (c) If A is a skew symmetric matrix, then AA^T is a skew symmetric matrix.
- (d) For any non-singular (invertible) matrix A, $(A^{-1})^T = (A^T)^{-1}$.
- (e) If A and B are non-singular $n \times n$ matrices, then A + B is non-singular.
- (f) If A and B are two $n \times n$ symmetric matrices, then AB is a symmetric matrix.
- (g) If A and B are two $n \times n$ non-singular matrices, then $A^{-1} + B^{-1} = A^{-1}(A+B)B^{-1}$.
- (h) If A is a 5×5 skew-symmetric matrix, then |A| = 0.
- (i) If an $n \times n$ matrix A has inverse B, then B is unique.
- (j) The system of linear equations $\begin{bmatrix} 1 & 1 & 3 \\ 1 & 0 & 2 \\ 2 & 1 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} \text{ has a solution.}$